Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 19(9): e1010933, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738262

RESUMO

Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.


Assuntos
Células Ciliadas Auditivas Externas , Perda Auditiva Neurossensorial , Humanos , Animais , Camundongos , Perda Auditiva Neurossensorial/genética , Audição , Neurônios Motores , Sobrevivência Celular
2.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832931

RESUMO

In our previous studies, a ketorolac-galactose conjugate (ketogal) showed prolonged anti-inflammatory and analgesic activity, causing less gastric ulcerogenic effect and renal toxicity than its parent drug ketorolac. In order to demonstrate the safer profile of ketogal compared to ketorolac, histopathological changes in the small intestine and liver using three staining techniques before and after repeated oral administration in mice with ketorolac or an equimolecular dose of its galactosylated prodrug ketogal were assessed. Cytotoxicity and oxidative stress parameters were evaluated and compared in ketorolac- and ketogal-treated Human Primary Colonic Epithelial cells at different concentrations and incubation times. Evidence of mitochondrial oxidative stress was found after ketorolac treatment; this was attributable to altered mitochondrial membrane depolarization and oxidative stress parameters. No mitochondrial damage was observed after ketogal treatment. In ketorolac-treated mice, severe subepithelial vacuolation and erosion with inflammatory infiltrates and edematous area in the intestinal tissues were noted, as well as alterations in sinusoidal spaces and hepatocytes with foamy cytoplasm. In contrast, treatment with ketogal provided a significant improvement in the morphology of both organs. The prodrug clearly demonstrated a safer profile than its parent drug both in vitro and ex vivo, confirming that ketogal is a strategic alternative to ketorolac.

3.
Environ Pollut ; 253: 1126-1135, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31434190

RESUMO

Food dyes, or color additives, are chemicals added to industrial food products and in domestic cooking to improve the perceived flavor and attractiveness. Of natural and synthetic origin, their safety has been long discussed, and concern for human safety is now clearly manifested by warnings added on products labels. Limited attention, however, has been dedicated to the effects of these compounds on aquatic flora and fauna. For this reason, the toxicity of four different commercially available food dyes (cochineal red E120, Ponceau red E124, tartrazine yellow E102 and blue Patent E131) was assessed on three different model organisms, namely Cucumis sativus, Artemia salina and Danio rerio that occupy diverse positions in the trophic pyramid. The evidence collected indicates that food dyes may target several organs and functions, depending on the species. C. sativus rate of germination was increased by E102, while root/shoot ratio was ∼20% reduced by E102, E120 and E124, seed total chlorophylls and carotenoids were 15-20% increased by E120 and 131, and total antioxidant activity was ∼25% reduced by all dyes. Mortality and low mobility of A. salina nauplii were increased by up to 50% in presence of E124, E102 and E131, while the nauplii phototactic response was significantly altered by E102, E120 and E124. Two to four-fold increases in the hatching percentages at 48 h were induced by E124, E102 and E131 on D. rerio, associated with the occurrence of 20% of embryos showing developmental defects. These results demonstrated that the food dyes examined are far from being safe for the aquatic organisms as well as land organisms exposed during watering with contaminated water. The overall information obtained gives a realistic snapshot of the potential pollution risk exerted by food dyes and of the different organism' ability to overcome the stress induced by contamination.


Assuntos
Corantes/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Artemia/efeitos dos fármacos , Compostos Azo , Cucumis sativus , Alimentos , Naftalenossulfonatos , Testes de Toxicidade , Peixe-Zebra
4.
Tissue Cell ; 51: 62-67, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29622089

RESUMO

The epidermis of Tarentola mauritanica in the skin regions of back, flank and belly has been described using light and electron microscopy. This animal model was useful to give an insight of the functional pattern involved in pigmentation, cryptism and photosensitivity. Skin from back and flanks, in electron microscopy, shows a high concentration of chromatophores, among those melanophores, xanthophores and iridophores have been reported. Interestingly, in the flank-back transition region electron microscopy reveals the presence of nerve endings. Our contribution adds new knowledge about the skin of this species, and it could be useful to study in deep the mechanism of cryptic colour change in reptiles.


Assuntos
Lagartos/anatomia & histologia , Pele/ultraestrutura , Animais , Cromatóforos/ultraestrutura , Microscopia Eletrônica de Transmissão , Pigmentação
5.
Aquat Toxicol ; 193: 201-209, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29096093

RESUMO

The effects of an exposure to cadmium chloride 0.47µM for 150days were studied in kidneys of juveniles Sparus aurata by a multidisciplinary approach so to correlate uptake and detoxification potential to changes in brush border and glycocalyx sugar composition. Results demonstrated that cadmium concentration in kidney significantly increased from day 30 reaching a plateau on day 120 while metallothioneins reached a peak on day 90 and by day 120 were already decreasing to control values. Cytological damage was extensive on day 90, clearly detectable at both structural and ultrastructural levels, in tubular cells and brush-border. Staining with a panel of four lectins revealed a significant increase in N-Ac-Gal and a decrease in mannose in the glycocalyx and the tubular basal membranes. From day 120, when cadmium concentration was high and metallothionein concentration decreasing, a clear recovery was observed in tubular cells morphology and sugar composition. Possible significance of these apparently contrasting data are discussed.


Assuntos
Cloreto de Cádmio/toxicidade , Túbulos Renais/efeitos dos fármacos , Rim/efeitos dos fármacos , Dourada/anatomia & histologia , Poluentes Químicos da Água/toxicidade , Animais , Contagem de Células , Inativação Metabólica , Rim/patologia , Túbulos Renais/patologia , Metalotioneína/metabolismo , Dourada/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...